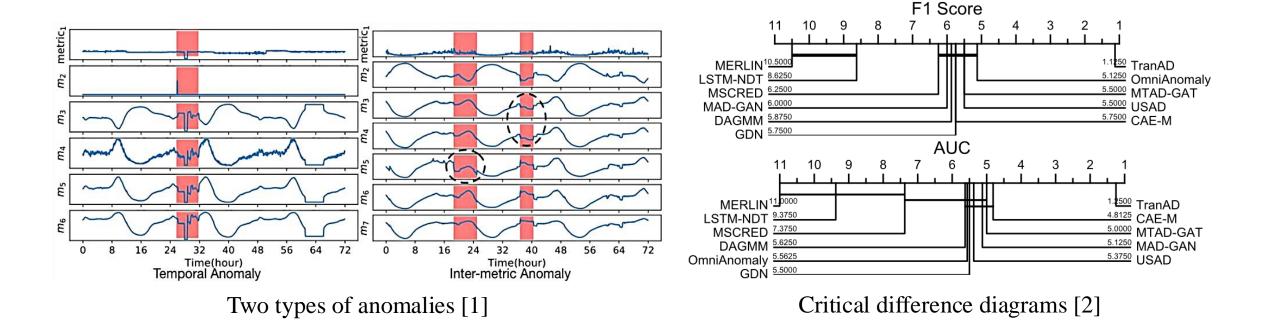
Online Data Drift Detection for Anomaly Detection Services based on Deep Learning towards Multivariate Time Series

Gou Tan, Pengfei Chen*, Min Li

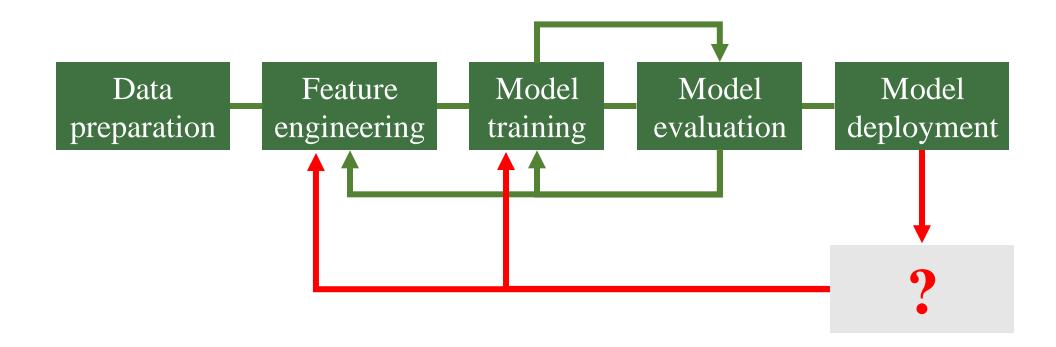
IDDSLAB

• Deep learning models have been applied in anomaly detection for multivariate time series.

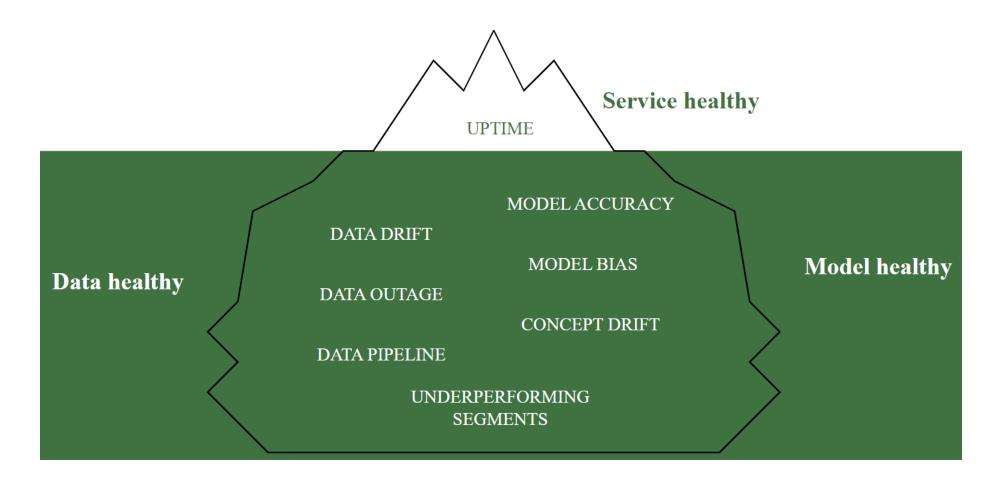


- [1] Z. Li et al,. Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. SIGKDD, 2021.
- [2] Tuli S et al,. Tranad: Deep transformer networks for anomaly detection in multivariate time series data. 2022.

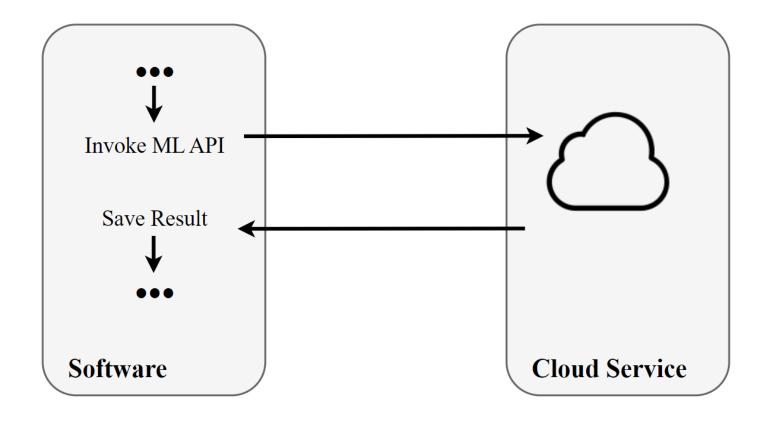
• Is deploying the high-performing models as a service the last step?



• What do we need to monitor? & Can we monitor them?

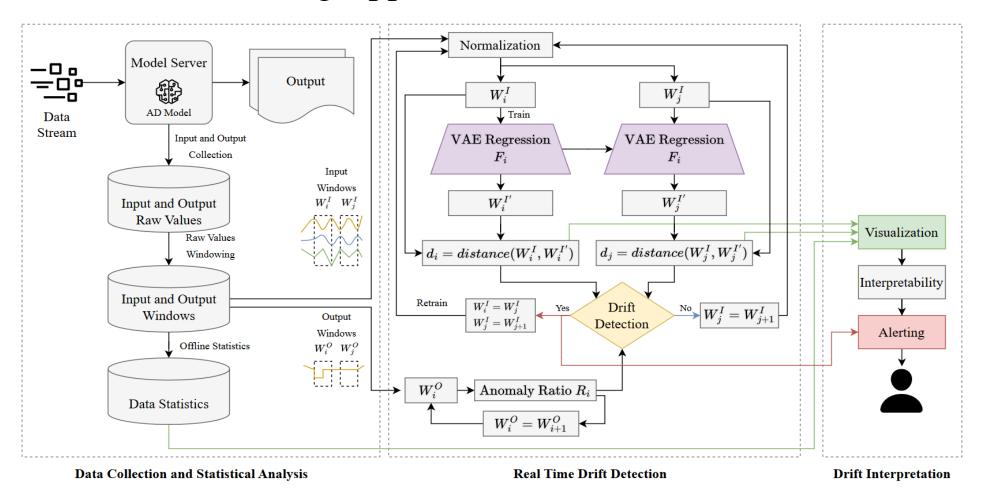


• What do we need to monitor? & Can we monitor them?

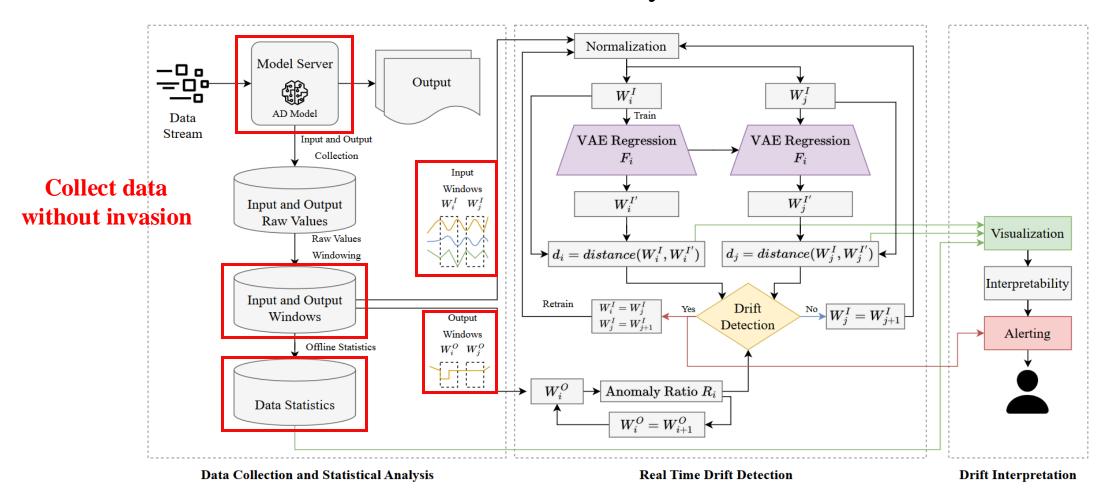


- Challenges
 - The Quality of Model Services Lacks Standards.
 - Lack of Data Drift Labels.
 - The Detection Method Needs to be Updated in Time.
 - Interpretability.

End-to-end Monitoring Approach

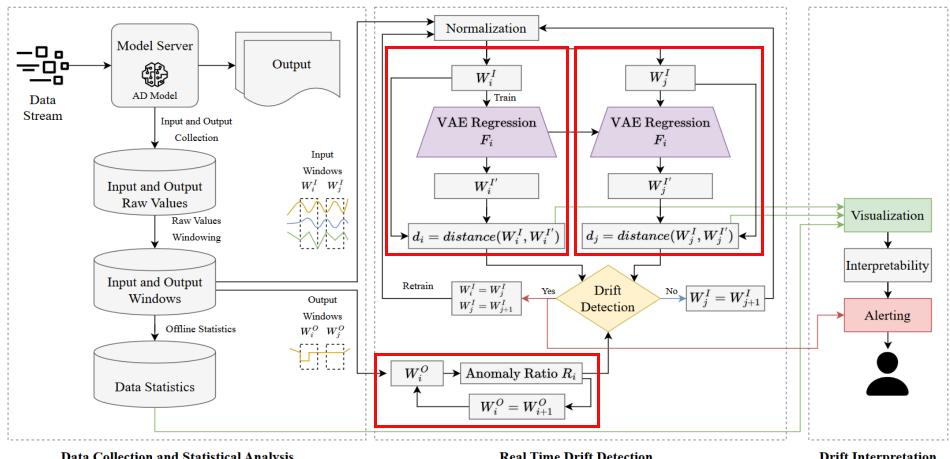


Data Collection and Statistical Analysis



8

Apply deep learning • Real Time Drift Detection drift detection algorithm



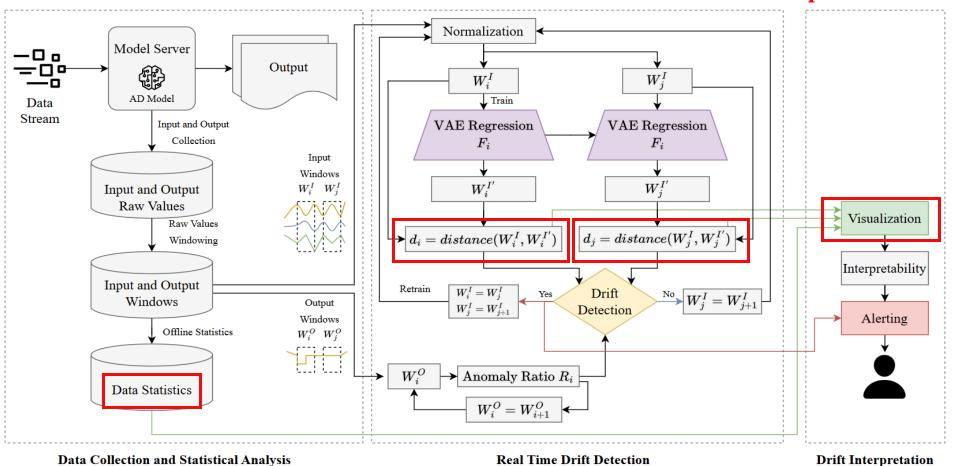
Data Collection and Statistical Analysis

Real Time Drift Detection

Drift Interpretation

• Drift Interpretation

Interpret drift through multiple data sources



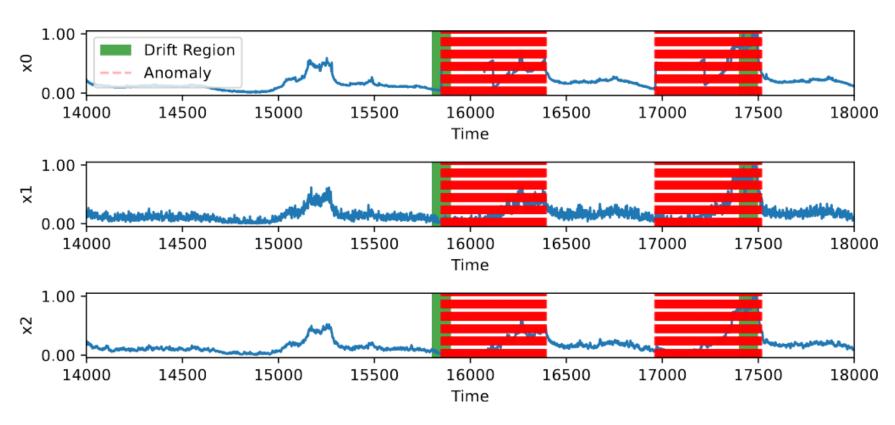
- Research Questions
 - RQ1. The Effectiveness of Drift Detection
 - RQ2. The Effectiveness of Monitoring Anomaly Detection Models
 - RQ3. The Interpretability of the Model Performance

• RQ1. The Effectiveness of Drift Detection

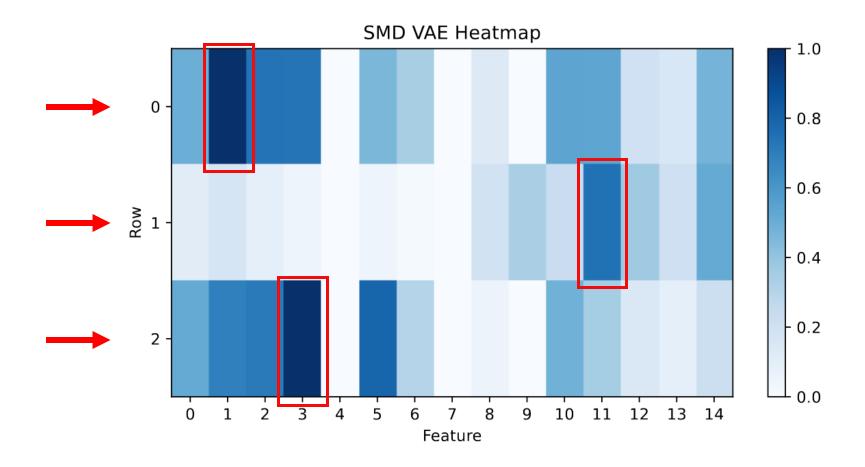
Dataset	Train	Test	Dimensions	Anomalies(%)
SMD	28479	28479	38	9.46
MSL	58317	73729	55	10.72
SWaT	99000	89984	51	12.17

	Number of drifts				
	$VAE(3\sigma)$	$VAE(2\sigma)$	$VAE(\sigma)$	HDDDM	
SMD	2	19	142	46	
MSL	6	13	368	82	
SWaT	8	25	449	65	

• RQ1. The Effectiveness of Drift Detection



• RQ1. The Effectiveness of Drift Detection



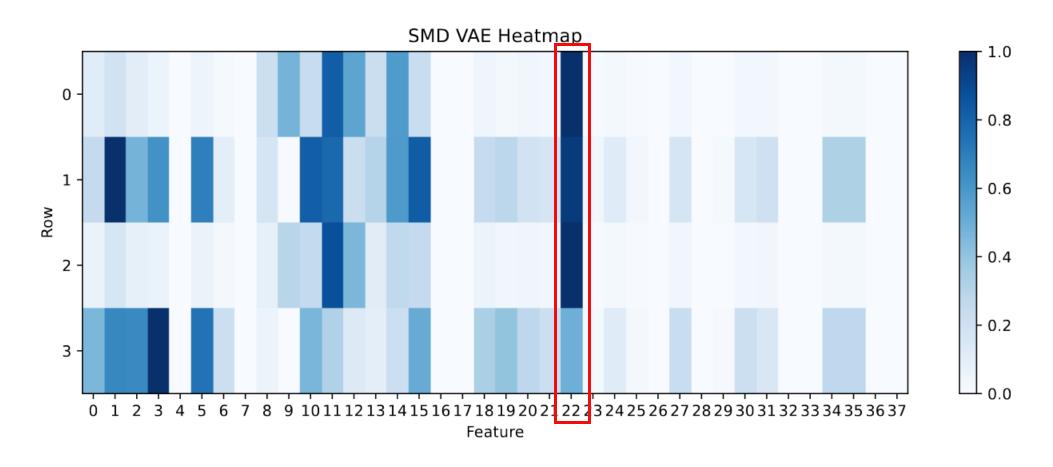
• RQ2. The Effectiveness of Monitoring Anomaly Detection Models

Dataset	Segment	Segment Anomalies(%)
SMD	15001-20000(5000)	43.8
MSL	5001-10000(5000)	23.3
SWaT	10001-15000(5000)	15.9

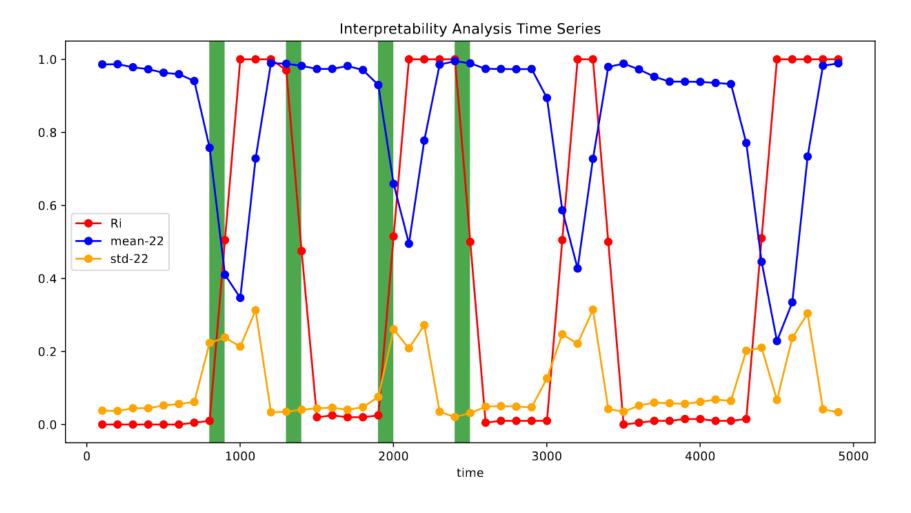
• RQ2. The Effectiveness of Monitoring Anomaly Detection Models

Method				SN	/ID			
Method	P	P'	R	R'	AUC	AUC'	F1	F1'
USAD	0.6808	0.4050	0.9973	0.8915	0.8929	0.7745	0.8092	0.5570
LSTM_AD	0.7731	0.8644	0.9820	0.9844	0.9102	0.9406	0.8651	0.9205
GDN	0.2648	0.4233	0.9983	0.9298	0.8083	0.7988	0.4186	0.5817
MAD_GAN	0.6169	0.2954	0.6127	0.5312	0.6447	0.5502	0.6148	0.3797
	MSL							
	P	P'	R	R'	AUC	AUC'	F1	F1'
USAD	0.9039	0.9047	0.6610	0.7350	0.8130	0.8510	0.7636	0.8111
LSTM_AD	0.9056	0.9056	0.7404	0.8460	0.8539	0.9075	0.8147	0.8748
GDN	0.9923	0.9888	0.5862	0.7042	0.7915	0.8500	0.7370	0.8226
MAD_GAN	0.9099	0.9082	0.5400	0.4008	0.7515	0.6756	0.6777	0.5561
	SWaT							
	P	P'	R	R'	AUC	AUC'	F1	F1'
USAD	0.1613	0.1613	0.6332	0.7967	0.7341	0.8167	0.2571	0.2683
LSTM_AD	0.1613	0.3226	0.6360	0.1618	0.7355	0.4797	0.2573	0.2155
GDN	0.1613	0.3226	0.6170	0.3062	0.7259	0.5741	0.2557	0.3142
MAD_GAN	0.1613	0.3226	0.6277	0.2871	0.7313	0.5632	0.2566	0.3038

• RQ3. The Interpretability of the Model Performance



• RQ3. The Interpretability of the Model Performance



Summary

Key Contributions

- A novel data-driven monitoring scheme for MTS anomaly detection services.
- One of the earliest attempts to apply deep learning-based drift detection algorithms to MLOps monitoring.
- A method that accurately detects data drift in services based on deep learning and provides reasonable interpretations.

Thank You For Listening!

Q & A

Gou Tan: tang29@mail2.sysu.edu.cn

Pengfei Chen: chenpf7@mail.sysu.edu.cn